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Abstract: This paper presents a graph neural network (GNN)-based approach 

for network attack detection, emphasizing the representation of hosts and flows as 

heterogeneous graphs. By leveraging topological and relational dependencies, the 

proposed models—GraphSAGE, GAT, and temporal GNN—demonstrate superior 

adaptability and accuracy compared to traditional intrusion detection systems. 

Evaluations on CIC-IDS2017, UNSW-NB15, and real NetFlow data confirm that 

GNNs effectively capture multi-stage and evolving attack behaviors while maintaining 

robustness under dynamic network conditions. 
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Proposed Approach: GNN-Based Network Attack Detection 

Recent advancements in network security have prompted the adoption of a 

graph-based perspective for analyzing network traffic in attack detection tasks. Instead 

of relying solely on raw feature vectors or flat data representations, this novel approach 

encodes hosts, flows, and connections as nodes and edges in a graph, thereby enabling 

the capture of complex structural characteristics inherent in modern network 

environments[2]. Graph Neural Networks (GNNs) process this graph-structured data, 

allowing models to learn intricate patterns and dependencies that traditional approaches 

may overlook. By harnessing the topological and relational information extracted from 

traffic graphs, the detection of multi-stage and stealthy attacks becomes more feasible. 

Previous studies have shown that such graph-based intrusion detection systems, like 

Anomal-E, achieve superior accuracy and resilience to evolving attack strategies 

compared to conventional network intrusion detection techniques[2]. 

Furthermore, constructing a host-flow heterogeneous graph forms a central component 

of the proposed network attack detection strategy by representing hosts and network 

flows as distinct node types. In this graph, hosts are modeled as nodes capturing device-

specific attributes, while flow nodes encapsulate communication events, with edges 

indicating relationships such as source-destination mapping or protocol exchanges. 

This heterogeneous graph structure allows the model to reflect both direct and indirect 

associations between actors in network traffic, effectively translating real-world 
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complexity into a trainable computational framework. As a result, the representation 

enables the learning of structural behaviors that are commonly exhibited by 

coordinated or multi-stage attacks, which may otherwise evade detection using purely 

feature-based methods[1]. By leveraging this graph-based modeling, GNNs can extract 

relational semantics from traffic data, improving recognition of attack topologies and 

variations across changing environments. 

GNN Architectures Explored 

Among the range of graph neural network models applied to network attack 

detection, three architectures were systematically investigated in this study: 

GraphSAGE, Graph Attention Networks (GAT), and a temporal GNN variant. 

GraphSAGE operates by aggregating information from a node’s local neighborhood, 

enabling inductive learning across previously unseen subgraphs and facilitating 

adaptability to dynamic network environments. In contrast, GAT incorporates an 

attention mechanism that assigns variable weights to neighboring nodes, thus 

prioritizing more influential traffic interactions when making node-level inferences—

an approach shown to improve both sensitivity and computational efficiency in 

anomaly detection scenarios[4]. The temporal GNN model extends conventional 

frameworks by capturing temporal dependencies, allowing the system to account for 

evolving network behaviors and sequential attack stages as part of the detection 

process. Collectively, these architectures were selected for their capacities to learn 

complex graph structures, adapt to dynamic contexts, and address the unique demands 

inherent in cybersecurity applications. 

Additionally, the experimental setup was designed to rigorously assess GNN 

performance across diverse and realistic network environments. The benchmarking 

procedure involved three well-established datasets: CIC-IDS2017, UNSW-NB15, and 

a collection of authentic NetFlow records captured from operational enterprise 

networks. These datasets encompass a wide array of benign and malicious network 

activities, ensuring that the evaluation captures the challenges faced in practical 

deployment scenarios. Care was taken to format each dataset as a host-flow 

heterogeneous graph, preserving relational and attribute information crucial for 

meaningful graph-based learning[2]. By using both standardized research benchmarks 

and real-world traffic samples, the experiments were able to provide a nuanced 

appraisal of the GNN models’ generalizability and their capacity to identify 

sophisticated attack behaviors in various operational contexts. 

Performance Comparison with Traditional Models 

Crucially, the evaluation revealed that GNN-based models deliver superior 

detection metrics compared to traditional tabu learning approaches, particularly in 

scenarios involving complex attack structures. Traditional models often employ flat 

statistical features and lack the capability to incorporate topological dependencies 

within network data, resulting in diminished efficacy when confronted with advanced 

multi-stage attack strategies. In contrast, GNN architectures leverage the connectivity 

and interaction information encoded within host-flow graphs, which translates to 

enhanced precision, recall, and adaptability across diverse datasets. Empirical results 

from recent hybrid GCN-GAT studies further underline these strengths by 

documenting considerably higher recall and F1 scores compared to conventional 
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algorithms, highlighting the acute advantage in both accuracy and detection 

sensitivity[4]. These findings confirm that the graph-based methodology enables the 

identification of coordinated attack patterns and complex behaviors that are poorly 

captured by traditional feature-driven or tabu-based frameworks. 

Table 1. Comparison of Traditional and GNN-Based Models 

Model Approach 
Key 

Advantage 
Main Limitation Performance 

Traditional 

ML (RF, 

SVM) 

Feature-

based 

Simple, 

interpretable 

Fails on 

complex/multi-

stage attacks 

Moderate 

DNN 
Deep feature 

learning 

Learns 

nonlinear 

patterns 

Ignores topology 
High but 

unstable 

GraphSAGE 

(GNN) 

Inductive 

graph 

learning 

Captures 

structural 

context 

Sensitive to sparse 

graphs 
High 

GAT (GNN) 
Attention-

based 

Focuses on 

key relations 

Higher 

computational 

cost 

Very high 

Temporal 

GNN 
Time-aware 

Detects 

evolving 

attacks 

Requires temporal 

data 
Excellent 

Moreover, the drift resistance of the proposed GNN models emerged as a 

defining factor in their sustained effectiveness within shifting network environments. 

Adversarial adaptation and the continuous evolution of attack methodologies present 

persistent obstacles for static or feature-driven detection systems, as they often fail to 

generalize beyond their training distributions. GNNs, in contrast, inherently model the 

relational and topological shifts manifested in novel attack traffic, allowing for the 

dynamic assimilation of unfamiliar patterns without the necessity for frequent 

retraining. This intrinsic robustness is attributed to GNNs’ capacity to generalize from 

the semantic structure of graphs rather than relying solely on superficial traffic features, 

enabling them to retain detection accuracy even as malicious behaviors and network 

usage profiles change[1]. As contemporary evaluations demonstrate, these models are 

less susceptible to performance degradation under evolving attack tactics, positioning 

them as a reliable solution for adaptive network security. 

Explainable AI (XAI) for Model Interpretation 

Consequently, the integration of Explainable AI (XAI) techniques into GNN-

based network attack detection addresses the critical need for transparency in 

automated security decision-making. XAI tools are employed to interpret the complex, 

often opaque reasoning underlying GNN predictions by providing intelligible 

explanations of node-level and graph-level outcomes relevant to security analysts. In 

network security applications, post hoc and self-interpretable XAI approaches can help 

clarify which host-flow relationships or structural graph features influenced an alert for 

malicious activity, thereby fostering confidence in the deployment of these advanced 

models[3]. Such interpretability is not only essential for model validation and 
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compliance in regulated environments, but also for practical incident response, where 

analysts must understand the rationale behind detection results in real time. By 

demystifying the decision process of GNNs, XAI methodologies contribute to stronger 

trust, enabling practitioners to leverage sophisticated detection models while 

maintaining accountability in critical operational contexts. 

Conclusion 

The experimental analysis confirms that GNN-based intrusion detection 

significantly enhances network security by modeling complex relationships within 

traffic data. Unlike traditional feature-driven techniques, GNN architectures exploit 

structural and temporal dependencies, yielding improved precision and resilience 

against evolving attack strategies. The inclusion of Explainable AI further bridges the 

interpretability gap, empowering analysts to understand model reasoning. Overall, the 

proposed framework establishes a robust, adaptive, and transparent foundation for 

next-generation intelligent network defense systems. 
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